Boundedness of moduli of varieties of General -type

Preliminaries II
X projective D on X a \mathbb{R}-cartier divisor normal
and C on X a prime divisor.

It P is big in X detinue

$$
\delta_{C}(D):=\operatorname{int}\left\{\operatorname{mult}_{C}\left(D^{\prime}\right): D^{\prime} \approx D D^{\prime} \geq 0\right\}
$$

* only depends on Ep.
* For D, D' big

$$
\begin{aligned}
& 0_{1} D^{\prime} \text { big } \\
& \delta_{c}\left(D+D^{\prime}\right) \leq \delta_{c}(D)+\delta_{c}\left(D^{\prime}\right) \\
& q E \geq
\end{aligned}
$$

Ex: $D^{\text {' }}$ is big and net. There $\exists E \geq 0$ s.t for $\forall, \varepsilon>0 \quad \exists A_{\varepsilon}$ nuple s.t
$D \sim_{\mathbb{R}} A_{\varepsilon}+\varepsilon E$ hance $\delta_{c}(D) \leq \delta_{c}\left(A_{\varepsilon}\right)+\delta_{c}(\varepsilon E)$

$$
\delta_{c}(D)=\operatorname{int}\left\{\varepsilon \operatorname{mul} t_{c}(E)\right\}=0
$$

Extend definition to psecode eetfcotime D. $\quad \delta_{c}^{\prime}(D):=\lim _{\varepsilon \rightarrow 0} \delta_{C}(D+\varepsilon A)$ for $A \operatorname{mpp} k$

Lemme: the two defuittous agree for
D big.
Proof:

$$
\lim _{\varepsilon \rightarrow 0} \delta_{C}(D+\varepsilon A) \leq \lim _{\varepsilon \rightarrow 0}\left(\delta_{c}(D)+\delta_{c}(\varepsilon A)\right)
$$

$=S_{c}(D)$. For the converse, since D is big there $\exists \Delta \geq 0$

$$
\begin{aligned}
& \text { since } B \sim_{\mathbb{R}} \delta A+\Delta \quad \text { for } \quad \delta \in \mathbb{R} \\
& \Rightarrow \quad(1+\varepsilon) B \widetilde{\mathbb{R}}^{B+\varepsilon \delta A+\varepsilon \Delta} \\
& (1+\varepsilon) \delta_{c}(B) \leq \delta_{c}(B+\varepsilon \delta A)+\varepsilon \delta_{C}(\varepsilon \Delta)
\end{aligned}
$$

$\lim _{\varepsilon \rightarrow 0}$ then this gives

$$
\delta_{c}(B) \leq \lim _{2 \rightarrow 0} \delta_{c}(B+\varepsilon \delta A)
$$

For D-psende-ettective we detine

$$
N_{\delta}(x / u, D):=\sum_{c} \delta_{c}(D) C
$$

prime Mininal nsedels and
in x good wiainel models
Sections 2.6-2.9
Récall:

$$
\begin{aligned}
& K_{x}+\Delta \text { is } l_{c}
\end{aligned}
$$

(1) (Y, M) is a weale lag cononical nedal if . Ky $+\Gamma$ net of non-positive i.e.,

$$
p_{i}^{x}\left(k_{x}+\Delta\right)=q^{b}\left(k_{y}+\Gamma\right)+E \quad E \geq 0 q-e x \text {. }
$$

(2) A w.l.C.m is a seni-ample nadel if KytM is sent-ample.
$(3)(Y, \Gamma)$ is nininel nedel if $(X, \Delta) d t, Y Q$ factorin) w.l.c.m and f is negatie (i.e.) pisppp $\left(E_{x e}(f)\right)$ $C \operatorname{Supp}(E)$
(4) $\left(Y_{1}, M\right)$ is a good mininal neolel if mininat nodel + semi-ample nadel.

- Minimal Models

Leman 2.7.1 Lat (x, Δ) be a $l c$ pair, where x is projective and let $X \ldots, \rightarrow$ be a weak \log - cmanical medal. Supp -se that the rational map ϕ a ssecintal to $\left|r\left(u_{x}+\Delta\right)\right|$ is birntimal. Then
(1) Every compment of $N_{\delta}\left(K_{x}+A\right)$ is foexceptrumel sleip
2) If p is a prime dNisar dit p is nat a component of the base-locus of $\left|r\left(u_{x}+A\right)\right|$ and st $\phi_{\text {pp }}$ is binational then p is not t-exceptional.

Pt:

$$
\begin{gathered}
p^{x}\left(K_{x}+\Delta\right)=q^{n}\left(K_{y}+r\right)+E \\
E \geq 0 \quad q \text {-excep }{ }^{H} \text { ous }
\end{gathered}
$$

Natica P, E is t-excoptional.
Claim: $\quad N_{\delta}\left(k_{x}+\Delta\right)=p_{x} E$,
2)

$$
\left.\operatorname{Ir}\left(k_{x}+\Delta\right)\right|_{p} \text { bir-tional } \Rightarrow \operatorname{|r}\left(\left.\left.q^{n}\left(k_{y}+\Gamma\right)\right|_{R}\right|_{R}\right.
$$

$\Rightarrow Q$ is not q-excoptional
$\Rightarrow p$ is not t-exoceptional

$$
\begin{aligned}
& N_{\delta}\left(l_{x}+\Delta\right)=N_{\delta}\left(R_{q_{0}}^{*}\left(K_{y}+\Gamma\right)+p_{0} E\right) \stackrel{n_{0}}{=} N_{\delta}\left(p_{x} E\right) \\
& =p_{\star} E .
\end{aligned}
$$

Lemur 2.7.2 Let (x, Δ) be dit 6 \bar{X} Q-factarial \& projective, Assume that $k_{x}+\Delta$ is pendo-efective.
Suppose that we run a $k_{x}+\Delta-M M p$ with scaling of an ample A, $-X \xrightarrow{t} Y$ s. that $(Y, \Gamma+t B)$ is net where $\Gamma=t_{0} \Delta B=t_{n} A$, for $t>0$
(1) If F is f-exceptional then $\mp \subset \operatorname{Supp}\left(N_{\delta}\left(u_{x}+\Delta\right)\right)$
(2) If t is small enough then

$$
\operatorname{Supp}\left(N_{\delta}\left(u_{x}+\Delta\right)\right) \subseteq \operatorname{Supp}\left(E_{x}(t)\right)
$$

(3) If (x, Δ) has a minimal nodal then $N_{\delta}\left(U_{x}+\Delta\right)$ is a Q-divis.r.

Proof: nodal tor

$$
\begin{aligned}
& p{ }_{i}^{w} \quad(x, \Delta+t A) \\
& x \rightarrow y \quad \text { for sone } t \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& N_{s}\left(U_{x}+\Delta+t A\right)=p_{x} E \\
& \left(p^{*}\left(U_{x}+\Delta+t A\right)=q^{2}\left(l_{y}+\Gamma+t B\right)+E\right)
\end{aligned}
$$

where E is qexceptional \& since f is negative

$$
\begin{aligned}
& \operatorname{Supp}\left(E_{x c}(t)\right) \subset p_{4} E \\
& * \operatorname{Supp}\left(E_{\infty c}(t)\right) \subset N_{\delta}\left(k_{x}+\Delta+t A\right) \leq N_{\delta}\left(k_{x}+\Delta\right)
\end{aligned}
$$ this shows (1).

(2) we have seen that $\operatorname{supp}\left(N_{\delta}\left(K_{x}+\Delta+t A\right)\right)$ is fexcoptional so bafflicient to show hat for t swill enough $\operatorname{Supp}\left(N_{\delta}\left(K_{x}+\Delta+t A\right)\right)=\operatorname{Supp}\left(N_{\delta}\left(K_{X}+A\right)\right)$ which is ok.
3) $1+(x, \Delta)$ has aminital uadel then $t=0$ and $s=N_{\delta}\left(l_{x}+\Delta\right)=p_{x} t$ Q - divis or

Hemme 2.7.3 (x, Δ) dH X Q-taetarial \& prajective. Assme thet $k_{x}+\Delta$ is psendo - e ffectine, if $t: x \rightarrow \rightarrow y$ is a bir. contraction s.t y is Q-factorlal $K_{y}+r=\operatorname{ta}\left(\theta_{x}+\Delta\right)$ is net ane) t only contracts components. of $N_{\delta}\left(K_{x}+\Delta\right)$ then f is a ninimal medel of (x, Δ).
Pf: Sutficient to shom thet t is negative.

$$
\mathfrak{c}_{x \rightarrow Y^{w}}^{q}
$$

$$
\begin{aligned}
& p^{k}\left(U_{x}+\Delta\right)+E=q^{x}\left(U_{y}+\Gamma\right)+F \quad E_{\delta F \geq 0}^{d i s / i n t} \\
& E=0 \quad N \delta\left(q^{*}\left(U_{y}+\Gamma\right)+F\right)=N_{\delta}(F) \quad q-e \text { occptional }
\end{aligned}
$$

theretare $N_{\delta}\left(l^{k}\left(U_{x}+\Delta\right)+E\right)$ is supported on F, evoly of corponint E is in support $\xrightarrow[T]{\text { next }}$

$$
\Rightarrow E=0 \quad \text { (Ky+r net } \Rightarrow+\text { non-p ositive) }
$$

$$
N_{\delta}\left(u_{x}+\Delta\right)=p_{ \pm} E
$$

$\Rightarrow f$ is neg-tive

Uood

Minithe।

Models
$\sqrt{1}(x, A) \quad d / t \quad Q$-facterial pi-jective Lammi 2.9 .1 If (x, A) has w.l.c.m then (x, A) has sami-ample madel
 (x, Δ) has good wimmal mede!

Proct:

write $p^{*}\left(K_{x}+\Delta\right)+E=K_{w}+\Phi \quad E^{-} p-$ exce. then by 2.10 in "Hacon - X_{n}, Existence of logconomical closures" $(X, \Delta) g^{\circ+i}$ min wardel \Leftrightarrow (w, ϕ) has garisminimal madel.
w.l.o.g

$$
X \xrightarrow{g} z \text { is a nolphiom }
$$

$$
\begin{gathered}
K_{x}+\Delta M M P / z \\
\text { with sealing of } \\
\text { ample }
\end{gathered}
$$

$N_{s}\left(K_{x}+\Delta\right)$ has sme support as

$$
N_{s}\left(K_{x}+\Delta+H\right)
$$

W.W.S $K_{y}+\Gamma$ is semi-mple
$h_{*}(K y+\Gamma)$ is sami- $\min l$.
for t smil enough $\operatorname{Supp}\left(E_{x}(t)\right)=N_{\delta}\left(K_{x}+L\right)$
$\left(E_{x c}(g)\right) \subset N_{\delta}\left(K_{x}+\Delta\right) \Rightarrow h$ dees not contranet any dwisor
$\Rightarrow K_{y}+\Gamma=h^{2}\left(h_{2}\left(K_{y}+\Gamma\right)\right)$ is saniarpl
2.9 Good minimal models

Lemma 2.9.3. Let be be any field of characteristic O and let (x, Δ) be a log pair over b. $\operatorname{Let}(\bar{x}, \bar{\Delta})$ be the base change to \bar{k}.
Assume $(\bar{x}, \bar{\Delta})$ is d / t and Qu-fodent Than (x, Δ) has a gad minimal model $\Leftrightarrow(\bar{x}, \bar{\Delta})$ has \quad god minimal model.
Remarle: Assume $(x, \Delta) \quad d / t$, because this is a part at dofhiton ot (x, Δ) haring nivival model.
$(\bar{x}, \bar{\Delta}) d / t \nRightarrow(x, \Delta) d \mid t$

Egg. $\left(\mathbb{A}^{2}, x^{2}+y^{2}=0\right)$ this is $d \mid t / \mathbb{R}$ but not over \mathbb{R}. $\left[\begin{array}{ll}\text { sue wot } \\ \text { anatole } \\ \text { an lion }\end{array}\right]$

Proot: Suppose
(x, Δ) hes a 11 good minimel nedel

$$
x \ldots+\rightarrow, \quad \bar{X} \cdots \bar{Y}
$$

then $(\bar{Y}, \bar{\Gamma})$ is a scmi-amp wode), $*\left(K_{\bar{y}}+\bar{\Gamma}\right)$ is sani-ample, f is non-postic

nininel medel $(\bar{Y}, \bar{\Gamma})$ oun
a $K_{x}+\Delta+t A \quad M M P$

$$
f: \quad X-\cdots \rightarrow Y
$$

Hen t is \sim mininal model far $(x, \Delta+t A) \Rightarrow \bar{f}$ is a waile lc made $($ for $(\bar{x}, \bar{\Delta}+t \bar{A}) \xrightarrow{\text { Lemm } 2}$
\rightarrow If $(\bar{x}, \bar{\Delta})$ has a good nilinat unedel then $\exists \varepsilon>0$ s.t $\bar{X} \rightarrow \bar{Y}$ wark $l e$ model of $(\bar{x}, \bar{\Delta}+t \bar{A})$ for $t \in[0, \varepsilon)$ then it is a semi- ample mede!
1.e., $\quad K_{\bar{T}}+\bar{\Gamma}+t \bar{B}$ is semianple for $t \in[0, \varepsilon) \Rightarrow k_{\bar{y}}+\bar{\Gamma}$ is saut-app $\Rightarrow K_{y}+\Gamma$ is saniample and s o (Y, Y) is - good minimal model Left to shaw (Lem 2.9.1) (x, Δ) dit Q-f-ctrial projective If (x, Δ) has a wale le-rodel then (x, Δ) has a sani-arple nodal $\Leftrightarrow(x, \Delta)$ has male mining $_{\substack{\text { model }}}^{\Longrightarrow}$

See previous lemma (page 9) for the proof of the part of Lemma 2.9.1 which is used here.

